Proper motions of radiative knots in simulations of stellar jets An alternative to pulsating inflow conditions
نویسندگان
چکیده
Aims. Elongated jets from young stellar objects typically present a nodular structure, formed by a chain of bright knots of enhanced emission with individual proper motions. Though it is generally accepted that internal shocks play an important role in the formation and dynamics of such structures, their precise origin and the mechanisms behind the observed proper motions is still a matter of debate. Our goal is to study numerically the origin, dynamics, and emission properties of such knots. Methods. Axisymmetric simulations are performed with a shock-capturing code for gas dynamics, allowing for molecular, atomic, and ionized hydrogen in non-equilibrium concentrations subject to ionization/recombination processes. Radiative losses in [S II] lines are computed, and the resulting synthetic emission maps are compared with observations. Results. We show that a pattern of regularly spaced internal oblique shocks, characterized by individual proper motions, is generated by the pressure gradient between the propagating jet and the time variable external cocoon. In the case of under-expanded, light jets the resulting emission knots are found to move downstream with the jet flow, with increasing velocity and decaying brightness toward the leading bow shock. This suggests that the basic properties of the knots observed in stellar jets can be reproduced even without invoking ad hoc pulsating conditions at the jet inlet, though an interplay between the two scenarios is certainly possible.
منابع مشابه
Heat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface
In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...
متن کاملA high - speed bi - polar outflow from the archetypical pulsating star Mira A
Optical images and high–dispersion spectra have been obtained of the ejected material surrounding the pulsating AGB star Mira A. The two streams of knots on either side of the star, found in far ultra–viollet (FUV) GALEX images, have now been imaged clearly in the light of Hα. Spatially resolved profiles of the same line reveal that the bulk of these knots form a bi–polar outflow with radial ve...
متن کاملNumerical hydrodynamic simulations of molecular outflows driven by Hammer jets
Very young protostars eject collimated jets of molecular gas. Although the protostars themselves are hidden, some of their properties are revealed through the jet dynamics. We here model velocity shear, precession, pulsation and spray within dense jets injected into less-dense molecular clouds. We investigate the Hammer Jet, for which extreme velocity variations as well as strong ripping and sp...
متن کاملEvidence for deceleration in the radio jets of GRS 1915 + 105 ?
There is currently a clear discrepancy in the proper motions measured on different angular scales in the approaching radio jets of the black hole X-ray binary GRS 1915+105. Lower velocities were measured with the Very Large Array (VLA) prior to 1996 than were subsequently found from higher-resolution observations made with the Very Long Baseline Array and the Multi-Element Radio Linked Interfer...
متن کاملPulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I
We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008